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Abstract

A fast, accurate Choleski method for the solution of
symmetric systems of linear equations is presented. This
direct method is based on a variable-band storage scheme and
takes advantage of column heights to reduce the number of
operations in the Choleski factorization. The method
employs parallel computation in the outermost DO-loop and
vector computation via the "loop unrolling" technique in the
innermost DO-loop. The method avoids computations with
zeros outside the column heights, and as an option, zeros
inside the band. The close relationship between Choleski
and Gauss elimination methods is examined. The minor
changes required to convert the Choleski code to a Gauss
code to solve non-positive-definite symmetric systems of
equations are identified. The results for two large-scale
structural analyses performed on supercomputers,
demonstrate the accuracy and speed of the method.
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1. Introduction

Since the invention of the first electronic computer by
Atanasoff to solve matrix equations of order 29 in 19391,
researchers in many scientific and engineering disciplines
have found their problems invariably reduced to solving
systems of simultaneous equations that simulate and predict
physical behavior. Currently, the solution of linear systems
of equations on advanced paraUel-vector computers is a key
area of research with applications in many disciplines 2"6.
Structural analysis codes in wide use today were developed
an single processor computers and often do not fully exploit
the vector or parallel processing capability of modern high-
performance computers. To achieve a high level of
efficiency on parallel-vector supercomputers, a restructuring
of the equation solution procedure and the memory and data
management of these structural analysis codes is required.
For example, the skyline storage technique used in many
sequential structural analysis codes lacks the efficiency of
other storage techniques used in the solution of linear
systems of equations on vector computers 7"8. Of equal
importance, several parallel equation solvers have been
demonstrated to work well for static and dynamic structural
analyses, eigenvalue and buckling analyses, sensitivity

analysis and structural optimization 9"i5. Since high-
performance computers currently have both parallel and
vector capability, the algorithms that exploit both will
achieve optimal performance for these computers.



Based on favorable experience on sequential computers, a
parallel-vector Choleski algorithm using a skyline storage
scheme was developed and shown to have excellent parallel
performance on a Cray 2 supercomputer as the number of
processors increased 16. However, the skyline scheme was
found to prohibit the traditional loop unrolling technique
used to optimize vector performance, so a less powerful
"vector unrolling" strategy was used.

The present paper describes a new algorithm that overcomes
the deficiency of skyline storage by using a variable-band
storage scheme. The objective of this paper is to describe
this new algorithm for solving matrix equations and to
demonstrate its accuracy and speed by solving large-scale
structural analysis applications on Cray supercomputers.

Since equation solution algorithms depend on the storage
scheme selected, two of the storage schemes used most
often are discussed in Section 2 of the present paper. A
description of how the basic Choleski method was
implemented to achieve both vector and parallel speed is
discussed in Section 3. The parallel FORTRAN language,

Force 17, used to implement this method, is also discussed
in Section 3. The results obtained for two large-scale
structural analysis problems to evaluate the performance of
the algorithm are discussed in Section 4. The minor
changes required to convert this newly-developed code from a
Choleski algorithm to a Gauss algorithm for solving non-
positive-definite symmetric systems of equations are
identified with examples in Appendix A. A description of
the input data with a simple example is in Appendix B. A
listing of the code and its use, both in a stand-alone mode
and in the CSM Testbed 18, is described in Appendix C.

2. Data Storage Schemes

The Choleski method for the solution of simultaneous

equations requires the decomposition of the matrix of
stiffness coefficients, [K], into an upper-triangular, factored
stiffness matrix, [U]. Details of this matrix decomposition
are given in Section 3 and Appendix A. Two methods most
often used in structural analysis codes to store [13] are the
variable-band, and skyline techniques.

For large finite-element applications, the user defines the
geometry, finite elements and loads of the finite-element
model. The user may use automated algorithms to reorder
the resulting stiffness matrix, [K], in the form that is most
efficient for the solver. The reverse Cuthili-McKee

algorithm 19 reorders the [K] matrix into a near minimum
bandwidth, and thus is used for the examples in this paper.

In a row-oriented, variable-bandwidth Choleski approach, the
bandwidth of each row of the upper-triangular matrix, [U], is
del'med as the number of coefficients from a diagonal term to
the last non-zero coefficient of the row, excluding the
diagonal term. The coefficients of the stiffness matrix for a
stiffened panel with a circular cutout (bottom of Fig. 1), are
plotted in a variable-band format as shown in Fig. 1.
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Fig. 1 Variable-band row storage of panel matrix.

The coefficients of the matrix are stored by rows where each
row represents a degree of freedom in the finite-element
model. The variable-band storage includes all zero
coefficients within the so called "profde" which is defined by
the ragged fight edge of the matrix represented in Fig. i. :_
Variable-band storage requires less memory than earl!er
schemes which stored all coefficients within the maximum
bandwidth, since earlier schemes stored and operated on
many zeros outside the variable-band profile.

The same p-anel Stiffness matrix is stored by columns in the
skyline format, like skyscrapers, in Fig. 2 from each
diagonal coefficient up to the last nonzero directly above it.

Fig. 2 Skyline column storage of panel matrix.
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In thiscolumn-orientedstoragescheme,thecolumnheight
is definedasthenumberof coefficientsfromadiagonal
coefficientto thelastnonzerocoefficientin thesame
column,excludingthediagonalcoefficient,asshowninFig.
2. Thisskylineformatrequiresfewercoefficientstostore
andoperate on during equation solution as indicated by the
many zeros (white spaces) in Fig. 2. The panel example is
used for illustrative purposes only, as in many applications,
the reduction in storage offered by the skyline approach is
not so pronounced.

Factorization of a matrix using skyline storage has the
advantage that calculations with zeros outside the skyline
need not be performed since zeros remain in these locations
after factorization. Although the skyline method has the
advantage of minimizing the storage and number of
operations required on sequential computers, it cannot
achieve optimal vector speed on high-performance computers
since it cannot use efficient SAXPY operations (i.e., E ax +
y, or scalar • vector + vector). SAXPY operations achieve
optimal performance on vector computers since they
continually stream operations to separate add and multiply
units which can operate simultaneously.

To compare the storage schemes in detail, the location of the
coefficients in the upper half of a 9x9 symmetric stiffness
matrix are shown in Fig. 3 as a simple illustrative example.
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The parallel-vector Choleski method, described in Section 3,
uses a variable-band storage scheme to achieve optimal
vector performance combined with the skyline column
heights to avoid calculations with zeros outside the skyline.

3. Parallel-Vector Choleskl Method Development

Basic Sequential Choleski Method

In the sequential Choleski method, a symmetric, positive-
definite stiffness matrix, IK], can be decomposed as

[K]= [U]T [UI (1)

with the coefficients of the upper-triangular matrix, [13]:

(2)Uij = 0 for i>j

Ull = _11 ; Ulj - Ul 1

i.k_ilUki2uii = Kii -

forj_ 1 (3)

for i>l (4)
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When j=i, the numerator of Eq. 5 is identical to Eq. 4
without the square root operation, which simplifies coding.

Regardless of whether the Choleski or Gauss method is used
(see Appendix A), the basic skeleton FORTRAN sequential
code for matrix factorization is given in Fig. 4 with
comments inserted to explain the connection to Eqs. 3-5.

The non-zero integers in Fig. 3 are the index (location) of
each stiffness coefficient stored contiguously in a one-
dimensional array. The 34 matrix coefficients are numbered
row-wise according to a variable-band storage scheme, where
for illustrative purposes, the seven zeros are stored within
five of the rows. The skyline storage scheme requires only
29 locations to store the same matrix, since the five zeros
in columns 3, 7 and 8 in Fig. 3 fall outside the skyline and
need not be stored. The two zeros in row 3 must be stored
in both the variable-band and skyline storage schemes since
they may become non-zero during factorization. The
bandwidth of row 2 in Fig. 3 is 4, excluding the diagonal
coefficient, and the height of column 6 is 4, excluding the
diagonal coefficient.
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DO 1 i = row#l, row#n

DO 2 k = top row# of ith column, i-1
compute multiplication factor, xmult
xmult = U(k,i)
xmult = U(k,k) * U(k,i) replaces above statement
DO 3 j = i, k + row length of row k
calculate the numerator of Eq. 5

U(i,j) -- K(i,j) - xmult * O(k,j)
Continue
Continue
calculate t'mal value of U(i,i) as in Eq. 4
U(i,i) = SQRT(U(i,i))
remove above statement

DO loop 4 divides the numerator of Eq. 5 by uii
xinv = 1AJ(i,i)
DO 4 j = i+l, i + row length of row i
U(i,j) = U(i,j) * xinv
Continue
Continue

Fig. 4 Sequential Choleski variable-band
skeleton code for matrix factorization.

To use the Gauss solution method (i.e., for non-positive-
definite systems of equations, see Appendix A), only two
FORTRAN statements, labeled cgauss in Fig. 4, change.

The multiplier constants, xmult, and the column height
informationl6, 20 are utilized in the DO 2 loop in Fig. 4
to avoid operations with zeros outside the column height (or
skyline). The parameter, k, of the 1:)O2 loop is illustrated
in Fig. 3. For i=6 (in DO 1 of Fig. 4), the index k (in DO
2) has the values from 2 to 5 as shown in Fig. 3.

Although [K] and [U] are two-dimensional arrays in Fig. 4,
in the actual Choleski factorization code, both are stored in a
one-dimensional array (as in Table 3 of 16). The
modifications required for the basic, sequential Choleski code
to achieve optimal vector and parallel performance (i.e.,
minimal solution time) are given next.

Vectorize Choleski Code with Loop Unrolling

For a single processor with vector capability, the loop-
unrolling technique (suitable for SAXPY operations) can be
exploited to significantly improve performance. The
SAXPY operation is one of the most efficient computations
on vector computers since vector operations are performed in
parallel on separate add and multiply functional units.

In Fig. 3, for example, once the first four rows of the
factored matrix, [U], have been completely updated, row 5
can be updated according to the numerator of Eq. 5:

u5j = k5j - u15 * Ulj

- u25 * u2j

- u35 * u3j

- u45 • u4j

(6)
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In Eq. 6, u15, u25, u35 and u45 are multiplier constants.

Thus, u15 (or u25, u35, u45), Ulj (or u2j, u3j, u4j ) and k5j
play the role of the terms a, x and y, respectively, in
SAXPY operations. The SAXPY operations in Eq. 6 are
also loop unrolled to level 4 since operations on four rows
are stacked together into one FORTRAN arithmetic
statement. This loop unrolling is possible since "partial"
updated values of row 5 can be computed when any of the
fast four rows are complete.

In a previous paper using the column-oriented Choleski
method 16, once the first four columns of the factored
matrix, [U], were completely updated, all terms of column 5
were updated. For example, u25 was computed by Eq. 5 as:

u25 = k25 - (u12 • ulS)
u22 (7)

The term u25 in Eq. 7 was computed directly as the "final"
updated value, and could not be expressed in terms of
"partial" updates as is the case in Eq. 6. Therefore, the loop
unrolling technique could not be used in this case. Instead, a

vector unrolling strategy 16 was used to improve the vector
performance in Eq. 5.

However, in the present paper, the sequential Choleski code
in Fig. 4 can be modified to include loop-unrolling, say to
level 4 as is shown in Fig. 5.

DO1 i = row#l, row#n

DO 2 k = top row# ofi th column, i-l, 4
DO 3 j = i, k + row length of row k

c Eq. 6 (numerator of Eq. 5) Code follows
U(i,j) = K(i,j) - U(k,i) * U(k,j)

- UOc+l,i) * U0c+l,j)
- U(k+2,i) * U(k+2j)
- U(k+3,i) * U(k+3j)

3 Continue
2 Continue

c repeat loop 2 to update ith row by extra k values
c for DO 2 k = 1, 10, 4, extra k values are 9,10

U(i,i) = SQRT(U(i,i))
xinv = 1/U(i,i)
DO 4 j = i+ 1, i + row length of row i
U(i,j) = U(i,j) * xinv

4 Continue
1 Continue

Fig. 5 Vectorized Choleski factorization code
(with level 4 loop unrolling).

Using the loop-unrolling technique, the total number of load
and store instructions and operations between the main
memory and the vector registers is reduced significantly for
nested Do-loops. The modified outer loop (DO 2 in Fig.
5), has an increment equal to the level of unrolling, while
the innermost loop (DO 3 in Fig. 5) contains more
arithmetic computations in a single FORTRAN statement
than the basic code. For vector supercomputers, such as

i •

i"



Cray, SAXPY operations are known to be faster than dot-
product operations used in the skyline method. The use of a
variable-band is preferred to the skyline storage scheme since
it permits the SAXPY operations of Eq. 6.

In addition to vector capability, modem high-performance
computers also have multiple processors which can operate
in parallel. Considerably more work is required by engineers
to achieve parallel performance gains than to achieve vector
performance gains, since code must be restructured for
processor synchronization and load ba/ancing. The parallel-
vector Choleski method was coded (in the Force parallel
FORTRAN language) as the computer program pvsolve.
Pvsoive will be described after a brief synopsis of Force.

Parallel FORTRAN Language, Force

Force is a preprocessor which produces executable parallel
code from a combination of FORTRAN and a set of simple,
yet portable, parallel extensions tailored to run efficiently on
parallel computers 17. The parallel extensions used in
pvsolve are Prescheduled DO, Shared and Private
variables, Produce and Copy. Prescbeduled DO causes
all processors to execute the same Do-loop statements in
parallel simultaneously with each processor using a different
DO-loop index. Variables can be either Shared between all
processors or Private (each processor has its own value for
the same variable name). Care should be taken to avoid
large Private arrays, as they are stored in different memory
locations for each processor. Therefore, Shared arrays are
preferred to Private arrays. Copy and Produce are used to
synchronize tasks. Copy X into Y stores X in Y only if X
is "full" 0.e., a signal to all processors to resume their
computations), otherwise the processor waits. Produce X
= K assigns K to X and marks X as "full". If X is "full",
Produce waits until X is "empty" (i.e., a signal for
processors to wait) before assigning K to X. Force permits
algorithms to be independent of both the computer and the
number of processors, as the number of processors is not
specified until run time.

Parallel-Vector Choleski Factorization

In Choleski-based methods, a symmetric, positive definite
stiffness matrix, [K], can be decomposed as shown in Eq. 1.

For example, u57 can be computed from Eq. 5 as:

k57-u15u17-u25u27-u35u37-u45u47

u57 = u55
(8)

The calculations in Eq. 8 for the term u57 (of row 5) only
involve columns 5 and 7. Furthermore, the "final value" of

u57 cannot be computed until the final, updated values of

the first four rows have been completed. Assuming that
only the first two rows of the factored matrix, [U], have
been completed, one still can compute the second partially-

updated value of u57 as designated by superscript (2):

u57 (2)= k57- Ul 5 Ul7. u25 u27

5

(9)

If row 3 has also been completely updated, then the third

partially-updated value of u57 can be calculated as:

u57 (3) = u57(2)-u35 u37 (10)

This observation suggests an efficient way to perform
Choleski factorization in parallel on NP processors. For
example, each row of the coefficient stiffness matrix, [K], is
assigned to a separate processor.

From Equation 8, assuming NP = 4, it is seen that row 5
cannot be completely updated until row 4 has been
completely updated. In general, in order to update the ith
row, the previous (i-l) rows must akeady have been updated.
For the above reasons, any NP consecutive rows of the
coefficient stiffness matrix, [K], will be processed by NP
separate processors. As a consequence, while row 5 is being
processed by a particular processor, say processor 1, then the
first (5-NP) rows have already been completely updated.
Thus, if the ith row is being processed by the pth processor,
there is no need to check every row (from row 1 to row i-l)
to make sure they have been completed. It is safe to assume
that the first (i-NP) rows have already been completed as
shown in the triangular cross-hatched region of Fig. 6.

[] Completely Updated

• Not completely Updated

RowI-NP

Rowl

Fig. 6 Information required to update row i.

Synchronization checks are required only for the rows
between (i-NP+I) and (i-I) as shown in the rectangular solid
region of Fig. 6. Since the first (i-NP) rows have already

been completely factored, the ith row can be "partially"

processed by the pth processor as shown in Equations 9-10.

The vectorized Choleski code in Fig. 5 has been modified for
parallel processing. The resulting skeleton factorization part
of the full pvsolve code is shown in Fig. 7 with parallel
(Force) statements in boldface type.
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C

5
4

6

Shared K(21090396)
Private i,j,k,temp,xinv
{X} vector used to indicate when row is finished
[U] overwrites [K] in actual code to reduce storage
calculate U(I,1) in Eq. 3 on one processor
U(1,1) = SQRT(K(I, 1))
divide row#l by U(1,1) as in Eq. 3
declare row#1 t'mished
Produce X(1) = U(I,1)
startall available processors
Presched DO 1 i = row#2, row#n
lock processor if row# (i'NP) is not finished
release lock when row is finished
IF(i-N-P.GT. 0) then
Copy X(i-NP) into temp
End if

DO 2 k =top row# of the ith column, i-NP, 4
skip DO 3 if all multipliers are zero: zero checking

DO 3 j = i, k + rowlength of row k
U(i,i)= K(ij)-U(k,i)*U(kj)

-U(k+l,i)* U(k+Id)
- U(k+2,i) * U(k+2j)
- U(k+3,i) * U(k+3,i)

continue....
continue

locktheprocessorifrow#(i-I)notfinished
releasethelockwhen row#(i-1)isfinished

Copy X(M) iriiotemp

DO 4 k=max(toprow#ofithcolumn,i-NP+I),i-I

DO 5j= i,k + rowlengthofrow k
U(iO)= U(ij)-U(k,i)* U(kj)
continue
continue

U(i,i) = SQRT(U(i,i))
xinv = 1AJ(i,i)
DO 6 j = i+ 1, i + rowlength of row i
U(ij_ = U(i,j) * xinv
continue
broadcast to all processors that row i is finished
Produce X(i) = U(i,i)
End Presched DO

Fig. 7 Parallel-vector Choleski skeleton code
(with level 4 loop unrolling).

Solution of Triangular Systems

The forward/backward solution can be made parallel in the
outermost loop by using synchronization statements, and
can result in excellent computation speed-up for an
increasing number of processors on computers where
synchronization time is fast compared to computation time.
However, on Cray computers, the computations for the
forward/backward solution time are so fast that for better

performance in pvsolve, they are done on one processor
with long vectors rather than introducing synchronization
overhead on multiple processors. A further time reduction
for one processor is obtained by using loop unrolling in the
forward elimination and vector unrolling 16 (another form of

loop unrolling) in the backward substitution.

6

4. Evaluation of Method for Structural Analyses

To test the effectiveness of pvsolve, described in Section
3, two large-scale structural analyses have been performed on
the Cray Y-MP supercomputer at NASA Ames Research
Center. These analyses involved calculating the static
displacements resulting from initial loadings for finite
element models of a high speed research aircraft and the
space shuttle solid rocket booster (SRB). The aircraft and
SRB models were selected as they were large, available
finite-element models of interest to NASA. The Cray Y-
MP was selected as it is a high-performance supercomputer
with parallel-vector capability. To verify the accuracy of
the displacements as calculated from the equilibrium
equation (i.e. [K]{x} = {f}), the residual vector,

{R} = [K} {x}- {f} (11)

is calculated, and the absolute error norm,

ea= N/{R} T {R} (12)

and strain energy error norm,

es = Ix) T tK] [x}- [x} T {f} 03)

are evaluated. If no computer roundoff error occurs, all
components in the residual vector, {R} are zero. However,
performing billions of operations during equation solution
introduces roundoff which, for accurate solutions, results in

small values for {R}, ea and es in Eqs. 11-13.

The solution times using pvsolve for the SRB application
were also obtained on Cray 2 supercomputers at NASA
Ames and NASA Langley and compared with solution times

for tlie skyline algorithm in a previous pape rl6.

In the following applications, code is inserted in pvsoive
to calculate the elapsed time and number of operations taken
by each processor for equation solution. The Cray timing
and performance utilities (timef, hpm, ja and second) are
used to measure the time, operations and speed of the
equation solution on each processor. For each problem, the
number of Million FLoating point OPerations is divided by
the solution time, in Seconds, to determine the overall
performance rate of the solver in MFLOPS. The timings
obtained are conservative, since they were made with other
users on the systems. In every case, times would be less
and MFLOP rates more if pvsolve were run in a dedicated
computer environment.

High Speed Research Aircraft

To evaluate the performance of the parallel-vector Choleski
solver, a structural static analysis has been performed on a
16346 degree-of-freedom finite-element model of a high-

speed aircraft concept 21, shown in the upper right of Fig. 8.



7

10

8

6

Time,

sec 4

2

0

228 _ _ "MFLOPS

/ .,uI--- time saved

822zerochecking I

1 2 4 8

Number of Cray Y-MP Processors

Fig. 8 Effect of more processors on analysis
time (High-Speed Research Aircraft).

Since the structure is symmetric, a wing-fuselage half model
is used to investigate the overall deflection distribution of
the aircraft. The finite element model of the aircraft is

generated using the CSM Testbed 18 where the stiffness

matrix and load vector are in the form of processor ITER
(with reset sipr=-2), described further in Appendix B, The
half model contains 2851 nodes, 4329 4-node quadrilateral
shell elements, 5189 2-node beam elements and 114 3-node

triangular elements. The stiffness matrix for this model has
a maximum semi-bandwidth of 600 and an average
bandwidth of 321. The half-model is constrained along the

plane of the fuselage centerline and subjected to upward loads
at the wingtip and the resulting wing and fuselage
deflections are calculated.

The numerical accuracy of the static displacements calculated
is indicated by the small absolute and strain energy error
norms of 0.000009 and 0.000005, respectively, computed
from Eqs. 12-13. These residuals are identical no matter
how many processors are used. The small values of the
residuals indicates that the solution satisfies the original
force-displacement equation. The residuals are independant
of the number of processors indicating no error is introduced
by synchronizing the calculations on multiple processors.

The time taken for a typical finite element code to generate
the mesh, form and factor the stiffness matrix is 134 seconds
on a Cray Y-MP (802 seconds on a Convex 220) of which
the matrix factorization is 51 seconds. Using pvsoive, the
factorization for this aircraft application requires 2 billion

operations which reduces to 1.4 billion when operations
with zeros are eliminated. Although CPU time is less for
one processor, elapsed time is reported as it is the only
meaningful measure of parallel performance. Factoring [K]
with no zero checking takes 8.68 and 1.54 elapsed seconds
(at a rate of 228 and 1284 MFLOPS) on one and eight Cl_y
Y-MP processors, respectively, as shown in Table I.

Table 1 Matrix decomposition time (MFLOPS) for

aircraft on Cray Y-MP:
16,146 equations, bandwidth=600 max, 321 average
5,579,839 matrix size, 499,505 nonzeros

Processors Sec (MFLOPS) Sec (MFLOPS)
with zero-checkin_

I 8.68 (228) 6.81 (203)
2 4.50 (441) 3.46 (399)
4 2.41 (822) 1.89 (730)
8 1.54 (1284) 1.29 (1071)

Eliminating operations with zeros within the variable
bandwidth (zero checking, see Fig. 7) further reduces the
solution time to 6.81 and 1.29 seconds, respectively, on
one and eight processors. However, the reduced time with
zero checking is accompanied by a reduction in computation
rate (MFLOPS), since the added IF statements also reduce
the number of operations. The reduction in computation
time (nearly proportional to the number of processors) and

the portion of time saved by zero-checking are shown in
Fig. 8. The number above the bars (in MFLOPS) in Fig. 8
show the increased computation rate as the number of

processors increases.

Space Shuttle Solid Rocket Booster (SRB)

In addition to the high-speed aircraft, the static displacements
of a two-dimensional shell model of the space shuttle SRB,

shown in the upper right of Fig. 9, have been calculated.

5O

Time,
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4O

30 "MFLOPS

20 _"q'---time saved by

I I zero checking

0
1 2 4 8

Number of Cray Y-MP Processors

Fig. 9 Effect of more processors on analysis
time (Space Shuttle SRB).

This SRB model is used to investigate the overall deflection
distribution for the SRB when subjected to mechanical loads

corresponding to selected times during the launch

sequence 22. The model contains 9205 nodes, 9156 4-node

quadrilateral shell elements, 1273 2-node beam elements and
90 3-node triangular elements, with a total of 54,870 degrees



of freedom.Thestiffness matrix for this application has a
maximum semi-bandwidth of 900 and an average bandwidth
of 383. A detailed description and analysis of this problem
is given in references 22 and 23.

The calculated absolute and strain energy residuals for the
static displacements are 0.00014 and 0.0017, respectively,
from Eqs. 12-13. This accuracy indicates that roundoff error
in the displacement calculations is insignificant despite the
9.2 billion floating point operations performed.

The time for a typical finite element code to generate the
mesh, form and factor the stiffness matrix is 391 seconds on

the Cray Y-MP (15 hours on a VAX 11/785) of which the
matrix factorization is 233 seconds (51,185 seconds on
VAX"). Using pvsolve, the factorization for this SRB
problem, requires 40.26 and 6.04 seconds on one and eight
Cray Y-MP processors, respectively, as shown in Table 2.
Eliminating more than one billion operations on zeros
further r_uees the solution time to 5.79 seconds on eight

processors but reduces the computation rate to 1444
MFLOPS. The CPU times are approximately 10 percent
less than the elapsed times quoted on one processor.

Table 2 Matrix decomposition time (MFLOPS)
(shuttle SRB on Cray Y-MP)

54,870 equatiom,bandwidth=900 max, 383 average
21,090,396 matrix size, 1,310,973 nonzeros

Processors Sec. (MFLOPS) Sec. (MFLOPS)
with zero-checking

1 40.26 (228) 40.97 (224)
2 20.27 (452) 19.32 (425)
4 10.50(872) 10.00 (821)
8 6.04 (1517) 5.79 {14_..,)

A reduction in matrix decomposition time by a factor of
7.08 on eight processors compared to one processor (for zero
checking) is shown in Fig. 9. The corresponding
computation rate for this matrix factorization, using eight
processors on the Cray Y-MP is 1,517 MFLOPS. The
previous fastest time to solve this problem on the Cray Y-
MP using a sparse solver was 23 seconds on one processor
and 9 seconds on eight processors for a speedup factor of

2.57, 24 '

For structural analysis problems with a larger average
column-heighL and bandwidth than the aircraft or SRB

discussed, one can expect pvsolve to perform computations
at even higher MFLOPS rates since the majority of the
vector operations are performed on long vectors. For
example, a rate of i784 MFLOPS has been achieved by
pvsolve for a structural matrix with an average bandwidth

of 699 on the eight-processor Cray Y-MP 25"26 ............

The decomposition time for the Shuttle SRB matrix using

pvsolve, is compared to the skyline algorithm 16 in Fig.

10 for 1, 2 and 4 Cray 2 processors.

150

100

Time,
sec

50

Fig. 10

0
1 2 4

Number of Cray 2 Processors

SRB decomposition time comparison

(pvsoive vs. skyline method16).

A reduction in decomposition time by a factor of 2 is shown

for pvsoive in the figure for the Cray 2 at NASA Ames.
An additional reduction in decomposition time of
approximately 50 percent is shown for pvsolve on the
newer Cray 2S at NASA Langley with faster memory access
using static RAM compared to dynamic RAM on the Cray 2
at NASA Ames. The decomposition time for pvsolve
using eight processors on the Cray Y-MP (six seconds in
Fig. 9) is a reduction by factors of 23 and 6 when compared
to the skyline solution on 1 and 4 Cray 2 processors,
respectively, shown in Fig. 10.

The above results have been obtained using loop unrolling
to level 9. On the Cray Y-MP supercomputer, the
performance continues to increase until loop unrolling level

9, after which further performance gains are not significant
compared to the complex coding required. The pvsolve
code performed best with an odd number for loop unrolling,
because both data paths to memory are used simultaneously
at all times. The vector being modified plus the 9 unrolling
vectors make ten total vectors, an even number, which keeps
both data paths busy.

5. Concluding Remarks

A paralleivector Choleski method for the solution of large,
scale structural analysis problems has been developed and
tested on Cray supercomputers. The method exploits both
the parallel and vector capabilities of modem high-
performance computers. To minimize computation time,
the method performs parallel computation at the outermost
DO-loop of the matrix factorization, the most time-

consuming part of the equation soiution.......... In addi_0n, _the
most intensive computations of the factorizaton, ihe
innermost DO-loop has been vectorized using a SAXPY-
based scheme. This scheme allows the use of the loop-
unrolling technique which minimizes computation time.
The forward and backward solution phases have been found
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to be more effective to perform sequentially with loop-
unrolling and vector-unrolling, respectively.

The parallel-vector Choleski method has been used to
calculate the static displacements for two large-scale
structural analysis problems; a high-speed aircraft and the
space shuttle solid rocket booster. For both structural
analyses, the static displacements are calculated with a high
degree of accuracy as indicated by the small values of the
absolute and strain energy error norms. The total equation
solution time is small for one processor and is further
reduced in proportion to the number of processors. The
option to avoid operations with internal zeros in the matrix
further reduces both the number of operations and the
computation time for both applications.

Factoring the stiffness matrix for the space shuttle solid
rocket booster, which formerly required hours on most
computers and minutes on supercomputers by other
methods, has been reduced to seconds using the parallel-
vector variable-band Choleski method. The speed of
pvsoive should give engineers and designers the
opportunity to include more design variables and constraints
during structural optimization and to use more refined finite-
element meshes to obtain an improved understanding of the
complex behavior of aerospace structures leading to better,
safer designs. Since the algorithm is independent of the
number of processors, it is not only attractive for current
supercomputers, but also for the next generation of shared-
memory supercomputers, where the number of processors is
expected to increase significantly.

6. Appendix A

The row-oriented, sequential versions of both the Choleski
and Gauss methods are presented together to illuslrate how
their basic operations are closely related and readily
identified. To simplify the discussion, the following system
of equations is used throughout this section:

[K] {x} = {f} (14)

where
O-1 0

[K] = 2 -1

-1 1

(15)

,f,:{i/

9

The basic idea in both the Choleski and Gauss elimination
methods is to reduce the given coefficient matrix, [K], to an
upper triangular matrix, [U]. This process can be
accomplished with appropriate row operations. The
unknown vector, {x}, can be solved by the familiar forward
and backward substitution.

Choleski Method

The stiffness matrix [K] of equation 15 can be converted into
a Choleski upper-triangular matrix, [U], by appropriate row
operations:

2 -1 0
[K1]=_]= -1 2 -1

0 -1 1

LO 01=_[K2]= 0 _ -1 _[K3]= 0 -

0 -1 1 0 -1 1

[K41 = [o- oio¢3- ._
0 _ __2- _[KS]= 0 #'2 "/3-¢7 ¢3-

0 0 31 0 0 _-

where

Row 1 of [K2] = Row 1 of [K]/_/KI(1,1)
Row 2 of [K2] Row 1 of [K2]/_/2 + Row 2 of [K1]

Row 2 of [K3] = Row 2 of [K2] H-_-(2,2)

Row 3 of [K4] = Row 2 of [K3] * + Row 3 of [K31

Row 3 of [K51 = Row 3 of [K4]/_/-_-(3,3)

The multiplier constants, mij, used in the forward
substitution (or updating the right-hand side vector of Eq.
14) are the same as terms in the factorized upper-triangular
matrix such that:

i q2
m12=u12= -_r_, m13 = u13 = 0,m23 = u23 =-_

The solution of equations 14-16 is:

,x,={il (17)



Gauss Elimination Method

As in the Cholesld Method just described, the stiffness
matrix, [K], of Eq. 15 can be converted into a Gauss upper-
triangular matrix by appropriate row operations.

2 -1 0]

[K1]=[K]=-I 2-1

0 -1 1

ii 0][i i]_ [K2] = -1 =o [K3] =

-1 1 0

In this version of Gauss elimination, the multipliers

mij can be obtained from the factored matrix, [U], as:

°12_!
m12=Ull-'2

SD__0_ 0
ml3fUll -2-

u23=3= 2_
m23=u22 _ "3

2

An alternative version of Gauss elimination where the final

diagonal elements become 1 follows:

[K1]=[K]=

2 -1 0 -]

]-1 2-1

0-1 1

 [K2] =I l_0 _-1 _[K3]=

0-1 1
l i]0 1 -2

0 -1

[K4]=

1 _L 0 "]
2 10 1 -_

0 0

[K5] =

1 .1 0
2

0 1 -3_

0 0 1

Since the final diagonal terms become one, in the

computer code, the main diagonal of the factored matrix is
used to store the diagonal terms before scaling.

10

3 1
For example, u 1 1 = 2 ; u22 = _ ; and u33 = _. The

multiplier mij is obtained from the factored matrix, [U], as:

1
m12=u12* Ull =-_x2=-I

ml3=Ul3*Ull = 0x2 =0
2 3

m23 = u23 * u22 = -_ x _ =- 1

Similarities of Choleski and Gauss Method

1) The Choleski and Gauss solution procedures are quite
similar since both methods can be expressed in terms of
row operations which differ only by the scale-factors as
explained above.

2)

3)

For both methods, the multipliers, mij, used in the
forward substitution (to update the right-hand-side vector
Of Eq. 14) can always be recovered conveniently from the

factored, upper triangular matrix, [U].

Both methods can be adapted to solve unsymmetric

systems Ofiin_ eqtmtions, The basic pr_edure ts
essentially the same as that outlined above except that
the computer storage increases since the lower triangle
matrix of the factored matrix is used to store the

multipliers, mij. In some applications, partial pivoting
may be useful.

4) Since the multipliers of the Choleski method are identical

to its factored, upper triangular matrix, [U], the Choleski
method is slightly more efficient than the Gauss method.
However, the Gauss method can also be used to solve
non-positive-definite systems of equations.

7. Appendix B

The input data and arguments required to call the equation
solver, pvsolve, together with a simple 21-equation
example are given in this Appendix. The user should have a
limited knowledge of parallel computing and the parallel

FORTRAN language Force 17. Pvsolve contains a

Force subroutine, PVS, which may be called by general
purpose codes. The information required by PVS to solve
systems of simultaneous equations (i.e., [K]{u} = {f}) is
transferred via arguments in the call statement:

Forcecall PVS(a,b,maxa,irowl,icolh,neq,n terms,iif, opf)

where:

a = a real vector, dimensioned nterms, containing the
coefficients of the stiffness matrix, [K].

b = a real vector, dimensioned neq, containing the load
vector, {f}. Upon return from subroutine PVS, b
contains the displacement solution, {u}.

i



maxa = an integer vector, dimensioned neq, containing the
location of the diagonal terms of [K] in vector {a},
equal to the sum of the number coefficients.

irowl = an integer vector, dimensioned neq, containing the
row lengths (i.e., half-bandwidth of each row
excluding the diagonal term) of [K].

icolh = an integer vector, dimensioned neq, containing the
column heights (excluding the diagonal term) of
each column of the stiffness matrix, [K].

neq = number of equations to solve (= degrees of freedom).

nterms = the dimension of file vector, {a}, [= maxa(neq)].

iif = 1 factor system of equations without internal zero check
= 2 factor system of equations with internal zero check
= 4 perform forward/backward substitution
= 5 perform forward/backward substitution and error check

opf, ops = an integer vector, dimensioned to file number
of processors (8 for Cray Y-MP), containing the
number of operations performed by each processor
during factor and solve, respectively.

For example, the values of these input variables to solve a
system of 21 equations, whose right hand side is file vector
of real numbers from 1. to 21., and [K] is the symmetric,
positive-definite matrix in Fig. B 1 are given in Table B 1.

_0. O. O. O. O. O.

5. _8 .7.8 ,910. O. O. O. O. O.

IOA1 • O. lO. 0.1_0. O. O.

14 /15 _IOL_O.I.,91O. O. O.

+02,++1o1_1_ 0. 0.
2s ._ OL_12,,io.0. 0.

29..3 31 I O. O. O.

_. +0to. 0. ,.
Row 9----""4" _ _ .___'_

38 O+ +4 ,41 .42 43 I O. O. O. O. O.

4,1.+ .4.5 .,46 O+ O.l O. O. O. O. O.

47. .48 +49 O. L_ O. O. O. O.

50 51 52 .53_ O. O. O.

54 O. ,56 571 O. O. O.

58. O. 59l O. O+ O+

60 1_1 ,82 _63 (t

65. 55 O..

Row 18 = m e9
_7 O.

7

74]

Fig. BI Example [K] matrix with 21 equations.

The line in Fig. B1 represents the skyline defined by the
column heights which extend up to file last nonzero in each
column. The "extra zeros" outside the skyline (in boldface

in Fig. B1) are required to achieve level 9 loop unrolling.
The DO 2 loop in Fig. 5 illustrates this for level 4 loop
unrolling. The vectors {a}, {b}, {maxa}, [icolh}, and
{irowl} which are read by pvsolve are given in Table BI:

Table BI Pvsolve input to solve [K]{x}={b}
(example with 21 equations)
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i

1
2
3
4
5
6
7
8
9
10

11
12
13
14
15

16
17
18
19
20
21

22
23
24
25
26-33
34

35
36
37-38
39

a(i_ b(i) maxafi) icolhfi) irowl(i)

1. 1. 1 0 11
.2 2. 13 1 10
0 3. 24 1 9
.4 4. 34 3 8
0 5. 43 3 7
0 6. 51 4 6
0 7. 58 2 5
0 8. 64 1 4
0 9. 69 5 3
0 10. 73 1 10
0 11. 84 2 9

0 12. 94 3 8
5. 13. 103 3 7

.6 14. 111 4 6

.7 15. 118 5 5

.8 16. 124 3 4

.9 17. 129 3 3
0 18. 133 2 2
0 19. 136 3 2
0 20. 139 4 1
0 21. 141 1 0

0
0
10.
.11
0
14.

.15

.16
0
.19

135 0
136 70.
137 .71
138 0
139 72.

140 .73
141 74.

where neq = 21 and nterms = 141. This input data is read at
the beginning of the pvsolve program from the file
'COEFS.COLM' by subroutine CSMIN (see listing in
Appendix C). The Force subroutine, PVS is then called
twice; first to factor the matrix (iif = 2), and second to
perform the forward/backward solution for displacements
with error checking (iif = 5). A record is kept of number of
floating point operations performed by each processor to
factor and solve the matrix (totf, tots) as well as the elapsed

(et0-et5) and task CPU time (t0-t5) on each processor at six

key stages in the solution. Subroutine NORM reads file
original matrix and load vector from the file
'COEFS.COLM' and evaluates the residual (Eq. 11) and the

error norms (Eqs. 12-13).



8. Appendix C

A listing of the parallel-vector solution algorithm,
pvsolve, coded in the parallel FORTRAN language,

Force 17, follows in this Appendix. The code extends the
skeleton code in Fig. 7 considerably by using loops unrolled
to level 9 (instead of 4), one-dimensional vectors with

pointers (instead of arrays) and by including the code for
input/output, data handling, initialization, timing and
counting operations. Following the pvsolve code is the
command file used to obtain the static displacements for the
aircraft and SRB structures using the Solid State Disk and
1,2,4 and 8 Cray Y-MP processors. The pvsolve code is
all FORTRAN except for the cdir$ ivdep vector directive,

and the Force parallel directives in boldface type. The
dimension of the variables given on line 2 is for the static

analysis of the 16,146 equation research aircraft and should
be replaced by the dimensions given in line 3 to obtain the
space shuttle SRB displacement solution All variables are
Private unless they are declared as Shared.

Force PVSOLVE of np Identme
Shared real a(5208900),b(16150),at(499600),opf(8)

csrb Sharedreala(21090500),b(54890),at(1350761)
Shared real t0(8),t1(8),t2(8),t3(8),t4(8),t5(8),ops(8)
Shared realetO(8),et1(8),et2(8),et3(8),et4(8),et5(8)
Shared integermaxa(16150),irow(i6150),irowl(16150)
Shared integericoln(499600),icolh(16150),nc,neq
End declarations

et0(me)=timefO/1000.
t0(me)=secondO/np

if (me.eq.l) then call CSMIN(a,b,maxa, irowl,icolh,neq,
+ nterms,irow, icoln,nc,maxbw,8,1ocrow,iavebw)
write(*,*)'* PVSOLVE - pvsolve - PVSOLVE Mar. 1990'
write(*,*)'* Parallel-Vector equation SOLVEr by Olat _
write(*,*)'* Storaasll, Tarun Agarwal and Duc Nguyen'
write(*,*)'* ',rip,' proc. solve ',neq,' equations, no= ',nc
write(*,*)'* bandwidth: max= ',maxbw,', avg.= ',iavebw
write(*,*)'* [k] matrix size, nterms= ',nterms,' words'
endif

etl (me)=tlmef0/1000.
t1(me)=secondO/np

Barrier
End barrier

et2(me)=timef0/1000.
t2(me)=secondOlnp

call PVS to factor [k] with internal zero check (iif = 2) ........
iif = 2

Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif, opf(me))
et3(me)=timef0/1000.
t3(me)=second0/np

call PVS to backsolve for {u} (iif = 4, 5 error check eqs. 11-13)
iif -- 5

Forcecall PVS(a,b,maxa,irowl,icolh,neq,nterms,iif, ops(me))
et4(me)=timef0/1000.
t4(me)=second0/np

Barrier
nat=499600
umax = abs(b(1))
do 1 i= 1,neq

1 umax = amaxl(umax,abs(b(i)))
write(*,*)'* Maximum displacement = ',umax
if(iif.eq.5 ) call NORM(irowl,icoin,b,neq,nc)

c ...... reorder displacements and write to CSM Testbed .........
call TOCSM(b,irowl,icoln,at,at, icoln,8,nat)
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tmaxI=0
tmax2=O
tmax3=O
totf=0
tots=0

write(*.*)'**elapsed& cpu tasktime(sec)*****'
write(*,*)'proc, force input Barrier factor f/b'
do 2 i=l,np

write(*,3)'wall ',i,etO(i),et 1(i),et2(i),et3(i),et4(i)
wrlte(*,3)'tcpu ',i,t0(i),t 1(i),t2(i),t3(i),t4(i)
tmaxl=max(tmaxl,et3(i)-et2(i))
tmax2=max(tmax2,et4(i)-et3(i))
tmax3=max(tmax3,et4(i)-et2(i))
tot f=totf+opf(i)/1000000.

2 tots=tots+ops(i)/1000000.
3 format(a, i2,5f9.5)

write(*,*) tmaxl,' secs decomp, ',totf,
+ ' million ops. at ',totf/tmaxi,' mflops '

write(*,*) tmax2,' secs solve , ',tots,
+ ' million ops. at ',tots/tmax2,' mflops'

write(*,*) tmax3,' sees TOTAL, ',toff+tots,
+ ' million ops. at ',(tots+tott')/tmax3,' mflops'
End barrier

et5(me)=timef0/1000.
t5(me)=second0/np

write(*,*)'proc. ',me,' tot wall=',etS(me),'tcpu=',t5(me)
call exit(0)

Join
end

Forcesub PVS(a,b,maxa,irowl,icolh,neq,nterms,iif, ops)
+ of np ident me

dimension a(*),b(*),icolh(*),maxa(*),irowi(*)
Async real x(16150)
End declarations

if(iif.le.2) then
Presched do9i= 1, neq
Void x(i)

9 End presched do
ops=0

Barrier

a(l) = sqrt(a(1))
xinv= 1.0/a(1)

cdlr$ lvdep
do 20 k = 1, irowl(1)

20 a(k+l) = xinv*a(k+l)
ops = ops + irowl(1)+2

Produce x(1)=a(1)
End barrier

c ..... factor stiffness matrix in parallel from row 2 to neq
Presched do 100 i = 2, neq

iml = maxa(i)
icl = icolh(i)

c ...... get indices to segment column i in 3 parts ..............
ibot = i - 9*((i-1)/9)
icol = icl - ibot + 1
icolp= icol/9
itop = icol - 9*icolp

jrow = i - icl
jml = maxa(jrow) + icl
jjrow=irowl(jrow)
if (itop. ge. 1) then
ieopy = jrow + itop - 1
if (isfull(x(icopy))) go to 331

Copy x(icopy) into temp
endif

Co.o....... ...... °.°°° ......... ,°o°,.°......" ..... "'''°'°°''" .... "°°"° ........

331 go to (101,102,103,104,105,106,107,108), itop



go to 150
cdir$ ivdep
101 do 111 k = 1, jjrow-icl+l

kml = k-1

111 a(iml+kml) = a(iml+kml)-a(jml)*a(jml+kml)

go to 150

102 jm2 = jml + jjrow

cdlr$ Ivdep

do 112 k = I,jjrow-ic1+1
kml = k-1

112 a(im1+kml) = a(iml+kml)-a(jml)*a(jml+kml)

+ -a(jm2)* a(jm2+lcm 1)

go to 150

103 jm2 = jml + iirow

jm3 = jm2 + jjrow -I

cdlr$ ivdep
do 113 k = I,jjrow -icl+l

kml = k -I

113 a(iml+kml) = a(iml+kml) - a(jml)*a(jml+kml)
+ -a(jm2)*a(jm2+kml) -a(jm3)*a(jnd+kml)

go to 150

104 jm2 = jml + jjrow

jm3 = jm2 + jjrow -I

jm4 = jm3 + .ijrow -2

cdlr$ ivdep
do 114 k = 1, jjrow -icl+l

kml = k -I

114 a(iml+kml) = a(iml+kml)-a(jml)*aOml+kml)
+ -a(jm2)*a(jm2+kml)-a(jm3)*aOm3+kml)

+ -a(jm4)*a(jm4+kml)

go to 150

105 jm2 = jml + jjrow

jm3 = jm2 + jjrow -1

jm4 = jm3 + jjrow -2

jm5 = jm4 + jjrow -3

cdlr$ ivdep
do 115 k = 1, jjrow -ic1+1

kml = k -1

115 a(iml+krnl) = a(iml+kml)-a(jml)*a(jml+kml)

+ -a(jm2)*a(jm2+km 1)-a(jm3)*a(jm3+km i)

+ -a(jm4)*a(jm4+kml)-a(jm5)*a(jm5+kml)

go to 150

106 jm2 = jml + jjrow

jm3 = jm2 + jjrow -1

jm4 = jm3 + jjrow -2

jm5 = jm4 + jjrow -3

jm6 = jm5 + jjrow -4

cdir$ ivdep

116
+

+

+

107

cd|r$

117

+

+

do 116 k = 1, jjrow -icl+l
kml= k -1

a(iml+kml) = a(iml+kml)-a(jml)*a(jml+kml)
-a(im2)*a(jm2+kml)-a(jm3)*a(jm3+kml)

-a(jm4)*a(jm4+kml)-a(jm5)*a(jm5+kml)

-a(jm6)*aGm6+kml)
go to 150

jm2 = jm I + jjrow

jnd = jm2 + jjrow -1

jm4 = jm3 + jjrow -2

jm5 = jm4 + jjrow -3

jm6 = jm5 + jjrow -4
jm7 = jm6 + jjrow -5

ivdep
do 117 k = 1, jjrow -icl+l

kml = k -I

a(iml+kml) = a(iml+kml)-a(jml)*a(jml+kml)
-a(jm2)* a(jmg+km I )-a(jm3)* aOm3+km I )
-a(jm4)*a(jm4+km l)-a(jm5)* a(jm5+km 1)

+

108

cdlr$

go to 150

ivdep
do 118 k
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-a(jm6)*a(jm6+kml)-a(jm7)* a(jm7+kml)

jm2 = jml + jjrow

jm3 = jm2 + jjrow -1

jm4 = jm3 + jjrow -2

jm5 = jm4 + jjrow -3
jm6 = jm5 + jjrow -4

jm7 = jm6 + jjrow -5

jm8 = jm7 + jjrow -6

= 1, jjrow -icl+l
kml = k -1

118 a(iml+kml) = a(iml+kml)-a(jml)*a(jml+kml)

+ -a(jm2)*a(jm2+kml)-a(jm3)*a(jm3+kml)

+ -a(jm4)*a(jm4+kml)-a(jm5)*a(jm5+kml)

+ -a(jm6)*a(jm6+kml)-a(jmT)*a(jm7+kml)

+ -a(jm8)*a(jm8+kml)

150 ops = ops + itop*(jjrow-ici+2)'2
II=I

idiv= I

if(icolp.le.II)then

II =icolp
idivl=1

else

idivI=icolp-ll+I
endif

jtop = icl

jbot = icl-itop+l
do 101= 1, 11

jtop = jtop - itop

jbot = jbot - 9*idivl

itop = 9*idivl
idivl = idiv

if (1.eq.ll) then

icopy = i - 1
else

ieopy = i -jbot +ibot-I
endif

if(isfull(x(icopy))) go to 332
Copy x(icopy) into temp

c ..... unroll to level 9: fast vector saxpy operations ......

332 do 200 j = jtop, jbot, -9

jjl = i-j

jjrow = irowl(jjl)

jml = maxa(jjl) + j

jm2 = jml + jjrow

jm3 = jm2 + jjrow -1
jm4 = jm3 + jjrow -2
jm5 = jm4 + jjrow -3

jm6 = jm5 + jjrow -4

jm7 = jm6 + jjrow -5

jm8 = jm7 + jjrow -6

jm9 = jm8 + jjrow -7

if(iif.eq.2) then

if (a(jm9).ne.O.O) then

Ivdep
do 300 k = 1, irowi(jjl) -j+l

kml = k -1

a(iml+kml) = a(iml+kml)-a(jml)*a(jml+kml)
-a(jm2)*a(jm2+krnl)-a(jm3)*a(jm3+kml)

-a(jm4)*a(jm4+kml)-a(jm5)*a(jmS+kml)
-a(jm6)*a(jm6+kml)-a(.jm7)*a(jm7+kml)
-a(jm8)* a(jm8+kml)-a(jm9)*a(jmg+km 1)

ops = ops + 18*(irowl(jjl)-j+l)
else

if(a(jm4).ne.O.O) then

go to 301

cdlr$

3OO
+

+

+

+



else 204

if((a(jml).eq.O.O).and.(a(jm2).cq.O.O).and.

+ (a(jm3).eq.O.O)) go to 302
endif

cdir$ lvdep
301 do 310 k = 1, irowl(jjl) -j +1 cdlr$ lvdep

kml = k -1

310 a(iml+kml) -- a(iml+kml)-a(jml)*a(jml÷kml)

+ -a(jm2)*a(jm2+km l)-a(jm3)*aOm3+kml ) 214

+ -a(jm4)*a(jm4+krnI) +

ops = ops + 8*(irowl(jjl)-j+l) +

302 if((a(jm5).eq.O.O).and.(a(jm6).eq.O.O).and.
(a(jm7).eq.O.O).and.(a(jmS).eq.O.O)) go to 200 205

cdlr$ lvdep
do 320 k = I, irowl(jjl)-j+I

kml = k -I

320 a(iml+kmi) = a(iml+kml)-a(jm5)*a(jm5+kml)

+ -a(jm6)*a(jm6+km l)-aOm7)*aOm7+km 1)
+ -a(jm8)*a(jmS+km 1) cdlr$ ivdep

ops = ops + 8*(irowl(jjl)-j+l)
endif
else 215

cdlr$ ivdep +

do 330 k = 1, irowl(ijl) - j +1 +
kml = k -I

330 a(iml+kml) = a(iml+kml)-aOml)*a(jml+kml) 206

+ -a(jm2)* a(jm2+km 1)- afire3)* a(im3+km 1)
+ -a(jm4)*a(jm4+km 1)-aOmS)*a(jm5 +kin 1)

+ -a(jm6)*a(jm6+krn 1)-aOm7)*a(jm7+km 1)

+ -a(jmS)* a(jm8+km 1)-a(jm9)*a(jm9+kml)
ops = ops + 18*(irowl(jjl)-j+l)

endif

200 continue cdir$ ivdep
I0 continue

11=i-1

if (isfull(x(ll))) go to 333 216
Copy x(ll) into temp +

C.,*.H,.,H,,.H,,,,H,*',,.O'°''*''''O''''H*'''HH''''°= ..... " .............. "["

333 go to (201,202,203,204,205,206,207,208) ibot-1 +
go to 250

201 iirow = irowl(i-1) 207

jml = maxa(i-l)+I

cdlr$ Ivdep

do 211 k= I,jjrow
kml = k-I

211 a(im1+kml) = a(iml+kml)-a(jml)*a(jml

+kinI)

go to 250
202 jjrow = irowl(i-2) cdir$ ivdep

jml = maxa(i-2) +2

jm2 = jml + jjrow

lvdep 217

do 212 k = I, jjrow -1 +
kml = k -I +

a(im1+km l)=a(im1+kml-)-a_-1-)_a(jm l+km I) +

-a(jm2)*a(jm2+km I)

go to 250 208

iirow = irowl(i-3)

jml = maxa(i-3) + 3

jm2 = jml + jjrow

jm3 = jm2 + jjrow -1

lvdep .....................

do 213 k = 1, jjrow -2
kml =k- 1

a(im l+kml)=a(iml +kin 1)-a(jm 1)*a(jm 1+kin 1)

-a(jm2)*a(jm2+km 1)-a(jm3)*a(jm3+kml) cdir$

8o to 250

cdlr$

212

+

203

cdlr$

213
+

jjrow = irowl(i-4)
jml = maxa(i-4) + 4

jm2 = jml + jjrow
jm3 = jm2 + jjrow -1

jm4 = jm3 + jjrow -2

"14

do 214 k = 1,jjmw -3
kml = k -1

a(iml+kml) = a(iml+kml)-a(jml)*a(jml+kml)

-a(jm2)* a(jm2+km l)-a(jm3)*a(jm3+km 1)

-a(jm4)*a(jm4+kml)

go to 250
jjrow = irowl(i-5)
jml = maxa(i-5) + 5

jm2 = jml + jjrow
jm3 = jm2 + jjrow -1

jm4 = jm3 + jjrow -2
jm5 = jm4 + jjrow -3

do 215 k = I,jjrow -4
kml = k -I

a(iml+kml) = a(iml+kml)-a(jml)*aOml+kml)

-a(jm2)*a(jm2+km l)-a(jm3)*a(jm3+km I)

-a(jm4)*aGm4+kml)-a(jm5)*a(jmS+kml)

go to 250
jjrow = irowl(i-6)
jml = maxa(i-6) +6
jm2 = jml + jjrow
jm3 = jm2 + jjrow -1
jm4 = jm3 + iirow -2
jm5 = jm4 + jjrow -3
jm6 = jm5 + iirow -4

do 216 k = 1, jjrow -5
kml = k -1

a(iml+kml) = a(iml+kml)-a(jml)*aOml+kmD
-a(jm2)*a(jm2+km 1)-a(jn_)*a(jm3÷km 1)

-a(jm4)*a(jm4+kml)-a(jmS)*a(jmS+kml)

-a(jm6)*a(jm6+kml)
go to 250 =_

jjrow = irowi(i-7)

jml = maxa(i-7)+7
jm2 = jml + jjrow

jm3 = jrn2 + jjrow -1

jm4 = jrrd + jjrow -2
jm5 = jm4 + jjrow -3

jm6 = jm5 + jjrow -4

jm7 = jm6 + jjrow -5

do 217 k = 1, jjrow -6
kml = k -1

a(im 1+kin |)=a(imi +km 1)-a(jmI)*aOm] +krn 1)

-a(jm2)*a(.im2+km I )-a(jm3)*aOm3+kml)

-a(jm4)*a(jm4+kml)-a(jm5)*_aOm5+kml)

-a(jm6)*a(jm6+kml)-a(jm7)*a(jm7+kml)

go to 250
jjrow =irowl(i-8)
jml = maxa(i-8) + 8
jm2 = jml + jjrow

jm3 = jrn2 + jjrow -1
jm4 = jrrd + jjrow -2

jm5 = jm4 + jjro w -3
jm6=jmS+jjrow-4 _ - : '

jm7 = jm6 + jjrow -5 _

jm8 = jm7 + jjrow -6 _-_

ivdep
do 218 k = I,jjrow -7



kml = k -1

218 a(iml+kml)=a(iml +kml)- a(jml)*a(jml +kml)
+ -a(jm2)*a(jm2+km 1)-a(jm3)* a(jm3+kml)

+ -a(jm4)*a(jm4+kml)-a(jm5)*a(jm5+kml)
+ -a(jm6)*a(jm6+krn 1)-a(jm7)*a(jm7+kml)
+ -a(jm8)*a(jmS+km 1)

250 ops = ops + 2*(ibot-1)*(jjrow -ibot +2)
a(im 1) =sqrt(a(iml))
xinv = 1.0/a(iml)

cdir$ ivdep
do 260 k = 1, howl(i)

260 a(iml+k) = xinv *a(iml+k)
ops = ops + irowl(i) +2

Produce x(i) = a(iml)

100 End presched do
else

c ..... forward reduction- unroll to level 3 for fast vector speed:

c ..... each 3 rows of [k] must end in the same column number..
Barrier

ops=O
ibot = neq -3" (neq/3)

do 510 i = l,neq-ibot,3
iml = maxa(i)

ira2 = maxa(i+l)

ira3 = maxa(i+2)

xmultl = b(i)/a(iml)
xmult2 = Co0+l) - xmultl*a(iml+l))/a(im2)
xmult3 = Co(i+2) - xmultl*a(iml+2)

+ - xmult2* a(im2+l))/a(im3)

b(i)= xmultl
b(i+l) = xmult2
b(i+2) = xmult3

cdir$ Ivdep

do 520 j = i+3, i+irowl(i)
520 b(j) = bO) - xmultl*a(iml+j-i)

+ - xmuh2*a(im2+j-i- 1)
+ - xmult3*a(im3+j-i-2)

510 ops = op* + 6*(irowl(i)-2)+ 9

if (ibot.eq.l) then
b(neq) = b(neq)/a(maxa(neq))

ops = ops + 1
else

if (ibot.eq.2) then

iml = neq -1
b(iml) = b(iml)/a(maxa(iml))
b(neq) = (b(neq) -b(iml)*

+ a(maxa(im 1)+l))/a(maxa(neq))
ops = ops + 4

endif
endif

c ........ back substitution with vector unrolling follows...
b(neq) = b(neq)/a(maxa(neq))
ops = ops +1

jml = neq -1
if (ibot .eq. 2) then

iml = neq -1
b(iml)=(b(iml)-

a(maxa(iml)+l)*b(neq))/a(maxa(iml))
ops = ops + 3

jml = neq -2
endif

if (ibot .eq. 0) then

iml = neq -1

+

b(iml)=(b(iml)-a(maxa(iml)+l)*b(neq))/a(maxa(iml))

im2 = neq -2

b(im2) =(b(im2) -a(max a(im2 )+ 1)*b(im 1)
-a(maxa(im2)+2)*b(neq))/a(max a(im2))
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cdir$

ops = ops + 8
jml = neq -3

endif

do 1010 i = jml,l,-3
iml = maxa(i)
ira2 = maxa(i-1)

irrd = maxa(i-2)
xmultl = 0.0

xmult2 = 0.0

xmult3 = 0.0

Ivdep

do 1020 j=i+l, irowl(i)+i
xmultl = xmuhl + a(iml+j-i)*b(j)
xmuit2 = xmult2 + a(im2+j-i+l)*b(j)

1020 xmuit3 = xmult3 + a(im3+j-i+2)*b(,j)
b(i) = (b(i) - xmultl)/a(iml)

b(i- 1) = (b(i-I) - a(im2+l)*b(i) - xmult2)la(im2)

b(i-2) = (b(i-2)-a(im3+2)*b(i)-a(im3+l)*b(i-1)

+ -xmult3)la(im3)

1010 ops = ops + 6*(irowl(i)) +12
End barrier

endif

retum

end
subroutine NOR M(irow,icoln,x,neq,nc)
dimension irow(*),icoln(*),x(*),b(neq),diag(neq),offdia(nc)

e.....get error error norm: [a]*{x}={b}: read file COEFS.COLM
c ..... ([xqt iter with reset sipr=-2 in CSM Testbed) where:
c ..... nc=number of nonzero, off-diagonal terms of [k]
c ..... irow(neq)=no, of nonzeros in each row w/o diagonal
c ..... icoln(nc)=colurnn no. of nonzero terms of [k] by row

c ..... diag(neq)--diagonal terms of [k], b(neq)=load vector
c ..... offdia(nc)=nonzero, offdiagonal terms of [k]

rewind(8)

read(8) neq,neq2.nc,nc2,jdo f, jt,ndo f

read(8) (irow(i) ,i-- 1 , neq)

read(8) (icoln(i). i -- 1 , no)

read(8)(diag(i), i = 1 . neq )

read(8)(offdia(i), i = 1, nc )

read(8)(b(i), i = I , neq )
icount = 0

do 1 i= 1,neq
1 diag(i) = diag(i) * x(i)

do2i= 1,neq- 1
nonz = irow(i)

do 2j = l,nonz
icount = icount + 1

locate= icoln(icount)
diag(i) = diag(i) + offdia(icount)*x(locate)

2 diag(locate)=diag(Iocate)+o ffdia(icount)* x(i)
enorm = 0.0

fnorm = 0.0
snorm = 0.0

do3i= 1,neq

diag(i) = diag(i) - b(i)
enorm = enorm + diag(i) * diag(i)

fnorm = fnorm + b(i)*b(i)

3 snorm = snorm + diag(i)*x(i)

write(*,*)'* ABSOLUTE error norm = ',sqrt(enorm)

relerr = sqrt(enormlfnorm)

write(*,*) '* RELATIVE to load = ',relerr

write(*,*) '* STRAIN ENERGY error norm = ',snorm

return
end

subroutine CSMIN(a,b,maxa,irowl,icolh,neq,nterms,

+ irow,icoln,nc,maxbw,iin,locrow,iavebw)

dimension a(*),b(*),max a(*),irowl(*),icolh(*),irow(*),icoln(*)



c.....read binary file COEFS.COLM output by iter(sipr=-2)...
opert(unit=8,file='COEFS.COLM',foma:'unform atted',

+ access='sequential',status='old')

read(iin) neq,neq2,nc,nc2,jdo f,jt,ndo f
read(iin) (irow(i), i = 1,neq)

read(iin) (icoln(i), i--1,nc)

c ..... initialize column heights .....................................

loop --9

do 100i= 1, neq

100 icolh(i) = 0.0
icount = 1

do 110 i = 1, neq:l
do 110 j =1, irow(i)

jcol = icoln(icount)

nowht = jcol - i

if (nowht.gt.icolh(jcol)) icolh(jcol)=-nowht
110 icount = icount+l

c ..... find the row-lengths .................................

isegl = loop*neq/loop

jcoum = 0
icount = 1

do 120 i = 1, isegl, loop

jcount = jcount + irow(i)
if (icoln(jcount).gt.icount) icount=icoin(jcount)

do 130 j = i+1, i+loop-1

jcount =jeotmt + irow(j)

130 if (icoln(jcoum).gt.icount) icount=icoha(jcount)

do 140 j = ki+1oop-1
140 irowl(j)= icount-j
120 continue

do 150 i = iseg1+1,neq

150 irowl(i)= neq - i

c.....locate diagonal elements in vector {a}................

maxa(1) = I

do 160 i =I, neq

160 maxa(i+l) = maxa(i) + irowl(i)+I
icount= I

do 170 i = I,neq-1

do 170 j = I, irow(i)

jcol= icoln(icount)

locate= maxa(i) +jcol- i

icoln(icount)= locate
170 icount =icount +1

nterms = maxa(neq+1) - 1
do 180 i = 1, nterms

180 a(i) = 0.0
read(iin) (a(maxa(i)), i=l,neq)

read (iin) (a(icoln(i)),i=l,nc)

read(iin) (b(i), i=l,neq)

c ..... find maximum and average bandwidths ............
maxbw = 0

iavebw = 0

do 190 i = 1, isegl, loop
if (irowl(i) .gt. maxbw) then

maxbw -- irowl(i)
locrow = i

endif

190 iavebw = iavebw + loop*irowl(i) - (loop)*(loop-1)/2

do 200 i = isegl+l,neq
200 iavebw = iavebw + irowl(i)

iavebw = iavebw/(ne.q+l)
maxbw =maxbw + 1

retum
end

subroutine TOCSM(x,irowl,icoln,b,u,irtoj,iin,nat)

dimension irowl(*),icoln(*),b(*),u(*),x(*),irtoj(*)
character*40 libnam
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common/constr/jt,jdf,jdd f,inex(6),mexin(6),ksym(3),q,qq

e convert staticdisplacements calculatedby pvsolve

c to csm testbedjointreferenceframe for [k]{u}={f|
c assume each node has 6 degrees-of-freedom( i.e.,

c u(14) isthe 2nd dof of node #3) and

c jdof = number of joints* number of dof per joint
read '(a)',libnara

nu = Imopen('old'.0,1ibnam,0,1000)

call dal(nu,11,jt,I8,-l,lseq.ierr.nwds,ne.lb,ityp,
+ 4hJDFI,4hBTAB,I.8)

c......read COEFS.COLM as in subroutine NORM ..............

rewind iin

read(iin) n,n,nc,nc,jdo f,jt,ndo f
if(nat.ge.2*jdof.and.nat.ge.ncoef) then

read (iin) (irowl(i),i=l,n)

read(iin) (icoln(i),i=l,nc)

read(iin) (b(i),i= 1,n)

read(iin) Co(i),i=l,nc)

read(iin) (b(i),i=l,jdof)

c ...... COEFS.COLM stores joint-to-row before row-to-joint.
c ...... only row-to-joint info. needed, so storage reused...

read(iin) 0torj(i).i=l,2*jdof)
else

write(*,*) 'error in TOCSM: insufficient memory'
endif

c ...... initialize joint displacement ....................

do 4 i=ljdof

4 u(i)=0.

do i i=jdof+l,jdof+n

locate = irtoj(i)
1 u(locate) = x(i-jdof)

c.....put prescribed displacements in vector {u} .....

do 2 i = jdof+n+l,2*jdof

if(irtoj(i).ne.0) then

locate = irtoj(i)

u(locate)= b(i-jdo0
endif

2 continue

c ..... write displacements for first 3 joint locations

njoint = jdof/6

do 3 i=1,3

il = (i-1)'6 + 1
i2 = i'6

3 write(6,5) i,(u(j),j=il,i2)

5 format('jt',i5,' disp=',6el 1.3)

c.....put displacements in csm testbed library file

c 'iibnam' 0oad set 1, constraint set 1)
iset = 1

ncon = l

nrhs= 1

nwds = jdof*nrhs

call gmsign('PVSOLVE')

call dal(nu,0,0,0,1,1seq,ierr,nwds,jt,jdf,-1,
+ 4hSTAT,4hDISP, iset,ncon)

call rio(nu, 1,2,1seq, l,nrhs,u(1),nwds,- 1,jt)

call gmclos(nu,0,9999)
return

end

The command file to compute static displacements for the

research aircraft and space shuttle SRB on the Cray Y-MP

using 1 to 8 processors follows. The first statements specify
the UNIX C-shell is used and the maximum number of

processors (NCPUS) that may be requested is 8_ The stiffens

matrix data (COEFS.COLM) and program (pvsolve) are then

copied to the solid state disk ($WRKDIR). Using the hardware

performance monitor, hpm, to count operations, times and



MFLOPS, the displacements for the aircraft and SRB are then
calculated by pvsolve on 8,4,2 and l processors. The
results are appended to the file 'out' which, upon completion,
is copied to the home directory:

#!/bin/sh
NCPUS=8
export NCPUS
cd $WRKDIR
date >out

cp lulra/storaasllnasp/COEFS.COLM .
cp /u/ralstoraasllsrblpvsolve .
date >>out
ja
hpm -gO -d forcerun pvsolve 8 >>out 2>&l
hpm -gO -d forcerun pvsolve 4 >>out 2>&l
hpm -gO -d forcerun pvsolve 2 >>out 2>&l
hpm -gO -d forcerun pvsolve 1 >>out 2>&l
date >>out

cp/scrS/storasH/srb/COEFS.COLM .
date >>out
hpm -gO -d forcerun pvsolvesrb 8 >>out 2>&l
hpm -gO -d foreerun pvsolvesrb 4 >>out 2>&l
hpm -gO -d foreerun pvsolvesrb 2 >>out 2>&l
hpm -gO -d forcerun pvsoivesrb 1 >>out 2>&l
date >>out
cp out SHOME

Pvsolve is run in the CSM Testbed 18 structural analysis
software to compute the static displacements for the SRB
using the *spawn command in the following runstream using
four Cray Y-MP processors:
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